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Abstract: Real-time prediction of vegetation phenology is critical for assisting crop monitoring, 21 

natural resource management, and land modeling in weather prediction systems. However, due 22 

to the lack of timely available satellite datasets and the inherent noise in time series, little 23 

attention has been paid to real-time and short-term predictions of vegetation phenology. The 24 

successful launch of the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard 25 

operational Suomi National Polar-orbiting Partnership (Suomi NPP) satellite makes this research 26 

possible because it can provide land surface observations in a timely fashion. This study 27 

introduces an operational system that provides real-time and short-term predictions of vegetation 28 

phenology. Specifically, the system integrates timely available VIIRS observations and the 29 

climatology (expectation and standard deviation) of vegetation phenology from long-term 30 

MODIS data to simulate a set of potential temporal trajectories of greenness development at a 31 

given time for each pixel. These potential trajectories are then applied to identify spring green 32 

leaf development in real time, predict the occurrence of greenup onset, mid greenup phase and 33 

maturity onset, and analyze the uncertainty of the prediction across a variety of ecosystems in 34 

North America. The accuracy of real-time and short-term predictions was evaluated by 35 

comparing with standard VIIRS detections and near-surface PhenoCam observations in both 36 

2014 and 2015 across North America. The results showed that the real-time prediction of spring 37 

phenological metrics from VIIRS were all significantly correlated with those derived from 38 

PhenoCam datasets (R2 > 0.96, P<0.01) and closely comparable to the standard VIIRS detections 39 

with a mean absolute difference of  less than 10 days, 5 days and 5 days in greenup onset, mid 40 

greenup phase and maturity onset, respectively. The mean absolute difference in the northern 41 

region for all three events was relatively smaller than that in the southern region. These findings 42 

demonstrate the capability of VIIRS observations to effectively predict temporal dynamics of 43 

vegetation phenology in real time at a continental scale. 44 

Keywords: spring phenology; VIIRS; real-time and short-term prediction; climatology of 45 

vegetation phenology 46 
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1. Introduction 47 

The timing of plant phenology, the recurrence of life cycle events, is important for understanding 48 

the response of ecosystems to climate change, the exchange of energy, carbon, and water vapor 49 

between the biosphere and atmosphere, and habitat and biodiversity (Cleland et al. 2007; 50 

Ganguly et al. 2010; Menzel et al. 2006). It can be monitored by several approaches including 51 

direct field observations, modelling, near-surface digital camera imaging and satellite remote 52 

sensing (Ault et al. 2015; Liu et al. 2015; Menzel et al. 2006; Richardson et al. 2011; Schwartz et 53 

al. 2013; Zhang et al. 2014). Phenology datasets collected from field observations and near-54 

surface digital camera (PhenoCam) at specific sites only focused on individual plants or 55 

communities in a small region. In contrast, phenology derived from satellite remote sensing, 56 

which is termed land surface phenology (LSP) (Henebry and de Beurs 2013), is the only way to 57 

quantify seasonal dynamics of vegetation properties over a large scale (Ganguly et al. 2010; 58 

Moulin et al. 1997; Zhang et al. 2006). 59 

 60 

To date, studies have been focusing on estimating land surface phenology using historical 61 

satellite datasets from AVHRR (Advanced Very High Resolution Radiometer), MODIS 62 

(Moderate Resolution Imaging Spectroradiometer) and Landsat during the past several decades 63 

(Fisher and Mustard 2007; Reed et al. 1994; Stöckli and Vidale 2004; Zhang et al. 2014; Zhang 64 

et al. 2003). The phenological metrics for a year are commonly detected from a time series of 65 

two years that consist of preceding half year, a given year, and following half year (Ganguly et al. 66 

2010; Zhang et al. 2006) because of the noises and frequent cloud contaminations in the time 67 

series of satellite observations, which is called standard phenology detection. In contrast, little 68 

effort has been devoted to real-time and short-term predictions of vegetation phenology. This is 69 
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due to the lack of timely available satellite datasets and generic methods for processing noisy 70 

time series of timely available satellite observations. However, a system for real-time and short-71 

term prediction of vegetation phenology using satellite datasets is needed to assist diverse 72 

applications, such as forecasting crop yields (Mkhabela et al. 2005; Weissteiner and Kühbauch 73 

2005), fire danger (Roads et al. 2005), soil moisture content (White and Nemani 2004) and the 74 

timing of allergenic pollen occurrences and duration (Karlsen et al. 2008); detecting disturbance 75 

in forests related to hurricane destruction (McNulty 2002); monitoring insect pest phenology 76 

(Mussey and Potter 1997); and modeling seasonal carbon sequestration (Baldocchi et al. 2001; 77 

Churkina et al. 2005; Gray et al. 2014). Moreover, the presence of plant leaves influences land 78 

surface albedo and exerts strong control on surface radiation budgets and the partitioning of net 79 

radiation between latent and sensible heat fluxes impacting atmospheric boundary layer 80 

processes and affecting weather prediction (Chen & Dudhia, 2001; Ek et al., 2003; Raddatz & 81 

Cummine, 2003; Richardson et al., 2013; Schwartz, 1992). Thus, vegetation phenology is 82 

expected as an input in land surface models (LSM) in numerical weather prediction (NWP) 83 

models of the National Center for Environmental Prediction (NCEP) in NOAA (Ek et al. 2003; 84 

Ek, 2011). 85 

 86 

The successful launch of the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument 87 

onboard the Suomi National Polar-orbiting Partnership (Suomi NPP) Satellite on 28 October 88 

2011 makes real-time prediction possible because NPP VIIRS is an operational satellite operated 89 

by NOAA (National Oceanic and Atmospheric Administration) and provides land surface 90 

observations in a timely fashion (Cao et al. 2013).  The VIIRS instrument is a new generation of 91 

moderate-resolution imaging radiometer following the legacy of MODIS on Terra and Aqua 92 
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satellites and AVHRR on NOAA satellites (Justice et al. 2013; Román et al. 2012). It was 93 

primarily designed to meet the needs of the operational weather community, but it still retains 94 

much of the MODIS capability for land science. The VIIRS data have been applied for 95 

monitoring land surface changes, such as wildfire (Schroeder et al., 2014) and land surface 96 

temperature (Liu et al., 2015). However, the application in land surface phenology detections has 97 

not been conducted except that a local study in central Iowa of the United States demonstrates 98 

the capability of the VIIRS time series to provide accurate phenology detections (Zhang et al., 99 

2017).  100 

  101 

During the past decade, several approaches have been proposed for near real-time prediction of 102 

vegetation growth using satellite datasets. Near real-time monitoring of vegetation health and 103 

drought impacts has been implemented by smoothing near real-time AVHRR observations 104 

(Kogan et al., 1997; Bokusheva et al, 2016) and “expedited” MODIS (eMODIS, a latency less 105 

than 24 hours) data (Brown et al., 2015). In phenology prediction, White and Nemani (2006) 106 

developed an algorithm using a specific vegetation index threshold for each phenoregion. 107 

Nemani et al. (2009) used a modeling framework integrating satellite data, microclimate 108 

mapping, and ecosystem simulation models to forecast landscape level indicators such as 109 

vegetation phenology and productivity. More recently, for the predication of phenological timing 110 

at a pixel level, a previous study (Zhang et al. 2012) combined the climatology of vegetation 111 

phenology and available satellite observations to establish a set of potential temporal trajectories 112 

during the senescence phase at a given time. These trajectories were applied to detect foliage 113 

coloration phases in real time, to predict the timing of future phenological events, and to further 114 

determine the uncertainty of predictions. 115 
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 116 

This study aims to establish a system for real-time and short-term predictions of spring 117 

phenology in North America using VIIRS data. We strived to accomplish our objectives by (i)  118 

generating climatology of LSP using MODIS data from 2001 to 2012; (ii) simulating a set of 119 

potential temporal trajectories during the greenup phase for each pixel by integrating LSP 120 

climatology and timely available VIIRS observations;  (iii) applying potential trajectories to 121 

predict greenup onset, mid greenup phase and maturity onset in real time and short term ahead 122 

and analyze the uncertainty of predictions in 2014 and 2015; and (iv) evaluating the accuracy of 123 

real-time and short-term predictions by comparing with standard VIIRS detection (as a reference) 124 

and near-surface PhenoCam data.   125 

 126 

2. Materials and Methods  127 

This research was to establish a system to predict spring vegetation phenology in real time and 128 

short term ahead following the general methodology summarized in figure 1. Briefly, we first 129 

calculated climatological phenology (expectation and standard deviation) from historical MODIS 130 

time series to represent the range of phenological variation. After VIIRS land surface 131 

temperature exceeded a threshold determining a winter period, we then started to simulate a set 132 

of potential temporal trajectories of spring vegetation growth based on timely available VIIRS 133 

observations and climatological phenology that varied in each simulation at a given day and 134 

pixel. From each temporal trajectory, phenological events were calculated. The mean and 135 

standard deviation of phenological events from a set of temporal trajectories were used as a 136 

prediction and uncertainty of the prediction, respectively. This processing was updated every 3 137 
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days with the accumulation of VIIRS observations. The relevant details of these procedures were 138 

described below.  139 

     140 

2.1 Generation of climatology of vegetation phenology 141 

Climatological phenology, which is known as climatological expectation of land surface 142 

phenology and is here referred to as multiple-year mean values (MV) and standard deviation 143 

(SD), represents the potential range of vegetation growth variations (Verhegghen et al., 2014; 144 

Verger et al., 2015). The climatological phenology was used for predicting future greenness state 145 

because it has been demonstrated that climatological information could improve the stability of 146 

near real-time predictions (Jiang et al., 2010; Verger et al. 2014). To calculate LSP climatology, 147 

we first collected daily MODIS CMG (climate modeling grid) surface reflectance measurements 148 

(MOD09CMG, Collection 6.0) at a spatial resolution of 0.05 degrees (~5 km) in North America, 149 

covering the period from 2001 to 2012. Based on daily surface spectral reflectance, a two-band 150 

enhanced vegetation index (EVI2) was then calculated for each pixel from red and near infrared 151 

reflectance by removing the blue-reflectance influence on enhanced vegetation index (EVI) 152 

through an empirical relationship between red and blue reflectance (Jiang et al. 2008). EVI2 has 153 

several advantages including that it can be derived from satellite sensors without blue reflectance, 154 

reduces noise related blue band that is relatively more sensitive to atmospheric impacts, and is 155 

functionally equivalent to EVI which is less sensitive to background reflectance and remains 156 

sensitive to high-density canopy cover (Huete et al. 2002). In order to reduce the data size and 157 

computation time, 3-day EVI2 composites were generated by selecting cloud-free observations.  158 

 159 
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Subsequently, phenological metrics in a given year were detected using the standard phenology 160 

detection algorithm that employed two years of EVI2 data. Specifically, a Hybrid Piecewise 161 

Logistic Model (HPLM) was used to reconstruct EVI2 temporal trajectories at the pixel level for 162 

a given year using a two-year time series that contain preceding half year, the given year, and 163 

succeeding half year, which was able to effectively minimize noise, such as to remove the 164 

impacts of snow and cloud covers, fill in missing observations, and smooth irregular values in 165 

the EVI2 time series (Zhang 2015). Phenological transition dates during a greenup phase were 166 

detected using the rate of change in the curvature of the reconstructed EVI2 time series.  167 

Specifically, transition dates of greenup onset and maturity onset correspond to the day of year 168 

(DOY) on which the rate of change in curvature in the EVI2 time series data exhibits local 169 

maxima (Zhang et al. 2003). The minima EVI2 in the reconstructed temporal trajectory was 170 

defined as the background value for a given pixel, which represents the EVI2 without 171 

contamination by clouds and snow cover before the start of vegetation growth. Moreover, EVI2 172 

values at the time of greenup onset and maturity onset and the maximum EVI2 value were also 173 

calculated from the reconstructed temporal trajectory. Further, the climatology of each 174 

phenology metrics, which represented mean value (MV) and standard deviation (SD), was 175 

calculated based on the retrieved phenological parameters from 2001 to 2012 at a pixel level. 176 

 177 

Although the MODIS and VIIRS instruments are similar, vegetation index values are not exactly 178 

the same due to the differences in spectral bands (Vargas et al. 2013). Therefore, it is necessary 179 

to calibrate the climatology of MODIS background and maximum EVI2 values, and EVI2 values 180 

at greenup onset and maturity onset in order to be comparable with VIIRS EVI2. Specifically, 181 

we first reconstructed the temporal trajectories of MODIS EVI2 (from MOD09CMG Collection 182 
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6) and VIIRS EVI2 in 2014 using Hybrid Piecewise Logistic Model (HPLM) method (Zhang 183 

2015). Subsequently, we spatially resampled MODIS EVI2 from 5km pixel to 4km pixel to be 184 

comparable to the pixel size in VIIRS prediction (see section 2.2) using a nearest neighbor 185 

method. A linear correlation between temporal 3-day composite MODIS EVI2 and VIIRS EVI2 186 

was established for each pixel, which was further used to calibrate MODIS climatology EVI2 187 

values. The phenological timing was assumed to be comparable between MODIS and VIIRS 188 

phenology detections.  189 

 190 

2.2 Simulation of potential growth trajectories and prediction of phenological timing 191 

In this study, we used VIIRS observations to predict spring phenology. VIIRS provides global 192 

moderate-resolution data every day at the local time around 13:30 PM with 22 spectral bands 193 

covering wavelengths from 0.4 to 11.8 µm. These bands include 16 moderate-resolution bands 194 

(M bands) with a spatial resolution of 750 m at nadir, five imaging resolution bands (I bands) 195 

with a 375 m spatial resolution at nadir, and one panchromatic Day Night Band with a near 196 

constant 750 m spatial resolution throughout the scan (Cao et al. 2013). We obtained NOAA 197 

VIIRS Environmental Data Record (EDR) products for phenology prediction. The NOAA NPP 198 

VIIRS program operationally produces a set of EDR products, which are distributed through 199 

NOAA’s Comprehensive Large Array-data Stewardship System (CLASS; 200 

https://www.nsof.class.noaa.gov/). VIIRS data have a latency of about 3 hours in Running S-201 

NPP Data Exploitation (NDE) system and a default latency of 6 hours in CLASS. From the EDR 202 

products, we obtained daily spectral reflectance, daily land surface temperature (LST), quality 203 

assessment (QA), and surface type (which contains dynamics of snow cover) for each VIIRS 204 

granule where pixel size varies. We then aggregated these granule data to a resolution of 0.036 205 
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degrees (~4km).  In doing this, good-quality daily observations were averaged while a fill value 206 

of 32767 was assigned if more than 2/3 of original observations in a 4km grid were bad (cloudy) 207 

or filled (no observations). This product is produced at a spatial resolution of 4km in order to be 208 

spatially comparable with the NOAA vegetation health product which has been generated since 209 

1981 (Kogan et al. 2015; Kogan 1997), to serve as inputs for the land model in the numerical 210 

weather prediction (NWP) models of the National Center for Environmental Prediction (NCEP) 211 

in NOAA (Ek et al. 2003; Ek, 2011) and to reduce the computing time for operational purpose. 212 

EVI2 was then calculated from the spectral reflectance data of red band (I1: 0.64µm) and near 213 

infrared band (I2: 0.865µm). The daily EVI2 and LST were subsequently aggregated to 3-day 214 

data by selecting cloud-free observations. If there was more than one selection within a 3-day 215 

window, the maximum EVI2 was used but the average LST was calculated.  216 

 217 

With the accumulation of VIIRS observations from January 1, the potential EVI2 trajectories of 218 

spring vegetation growth was simulated by combining available EVI2 observations and 219 

climatological phenology (Fig. 1). This simulation of EVI2 trajectories would not commence 220 

until the following criteria were met. (1) The date was less than one month before the 221 

climatological greenup onset (P1 in Fig.2); (2) EVI2 was not contaminated by snow; (3) LST 222 

was greater than the threshold (278 K) because vegetation is assumed to be dormant during the 223 

period of LST < 278K; (4) EVI2 was larger than background values with an increase of more 224 

than 0.02 during consecutive two 3-day periods (P2 in Fig.2). 225 

 226 

Once the initial criteria were satisfied, a set of potential EVI2 trajectories were simulated using 227 

the logistic model for a given date based on a potential EVI2 dataset (Zhang et al., 2003): 228 
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where t is time in the day of year (DOY), a is a parameter that is related to the maximum 230 

vegetation growth rate and corresponding time, b is a parameter that is associated with the rate of 231 

plant leaf development, c is the amplitude of EVI2 variation, and EVI2BK is the background EVI2 232 

value. Parameters of a and b are obtained by fitting the model using time series of EVI2 data.  233 

 234 

The potential EVI2 dataset consisted of timely available VIIRS EVI2 observations and 235 

climatological EVI2 phenological parameters. For a given date, the climatological phenological 236 

parameters, which were EVI2 values at greenup onset and maturity onset, background EVI2 237 

value, maximum EVI2 value, and the timing of greenup onset and maturity onset, were set to 238 

vary respectively within a range of mean value and standard deviation (between MV– SD and 239 

MV + SD).  Specifically, the climatological EVI2 values increased by intervals of one third of 240 

the SD and the timing increased by intervals of one day in each simulation. As a result, a set of 241 

simulated EVI2 temporal trajectories (generally more than 500) were generated in each day and 242 

each pixel. For each trajectory simulated from equation 1, we estimated the timing of greenup 243 

onset, mid greenup phase and maturity onset using the curvature change rate (Zhang et al. 2003). 244 

The mid greenup phase is the middle date during a greenup phase between greenup onset and 245 

maturity onset, which represents the time of 50% of EVI2 amplitude and matches the start of 246 

growing season defined using the threshold approach (White et al., 1997). The mean value of the 247 

phenological estimates from all curves for a given day and pixel was considered to be the 248 

prediction and the standard deviation was considered as the uncertainty of the prediction. This 249 

implementation of real-time prediction was continuously carried out during the greenup phase 250 

every 3 days. We assumed that a greenup phase ended if there were at least two smaller 3-day 251 
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EVI2 values followed by the occurrence of the maximum value. Here, we defined “short-term  252 

prediction” as the prediction before the occurrence of a phenological event, while detection 253 

around the phenological occurrence (within 3 days) was defined as “real-time  prediction”. After 254 

the occurrence of a phenological event, this was called “near real-time  prediction”.  255 

 256 
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Fig.1 Flowchart of real-time and short-term  predictions of spring phenology from VIIRS 257 

satellite data. The EVI2max represents the maximum EVI2 value during a growing season; 258 

EVI2BK represents background value, and LST is land surface temperature, t is the start date of 259 

simulation, t+3 is the date of EVI2 observation following start date. 260 

 261 

 262 

Fig.2 An example of simulating potential EVI2 temporal trajectories during a greenup phase 263 

from available EVI2 data and climatological phenology when EVI2 values at the greenup onset 264 

or maturity onset varied. The grey bar represents the potential range of timing and EVI2 values 265 

at the greenup onset and maturity onset, as well as maximum EVI2 values. The grey cross (P1) 266 

represents the date of one month before the climatological greenup onset and P2 is the start date 267 

of simulation. The EVI2 observations at the x-axis are fill values. 268 

 269 

2.3 Assessment of real-time and short-term predictions of  spring phenology 270 
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Real-time and short-term predictions of spring phenology was evaluated using three different 271 

approaches. First, the standard VIIRS detection of phenological transition dates was considered 272 

to be a reference. Specifically, the phenological metrics in 2014 and 2015 were retrieved from 273 

VIIRS EVI2 time series of July 2013-June 2015 and July 2014-June 2016, respectively, using the 274 

HPLM approach (Zhang et al., 2003, Zhang 2015). In the evaluation, we calculated the mean 275 

absolute difference (MAD) between standard detection and real-time and short-term predictions 276 

for each phenological event across North America. Second, the uncertainty in real-time and 277 

short-term predictions of phenological events was analyzed. Given that the accuracy of 278 

phenology detections could be dependent on vegetation type, MAD and uncertainty were further 279 

analyzed respectively for evergreen forest, deciduous forest, mixed forest, shrubland, savanna, 280 

grassland and cropland/natural vegetation mosaic.  281 

 282 

Third, the accuracy of real-time prediction of spring phenology from VIIRS was evaluated using 283 

near-surface PhenoCam data. The PhenoCam uses the networked digital cameras as multi-284 

channel imaging sensors to obtain observations repeatedly (30 minutes during daytime) across a 285 

range of ecosystem types (Richardson et al. 2011). The PhenoCam network was started in 2006 286 

at a regional level, and now has been expanded to a continental-scale observatory (Sonnentag et 287 

al., 2012; http://klima.sr.unh.edu/). It provides digital near-ground photography containing red-288 

green-blue (RGB) channels. In this study, we selected 95 phenocam sites that were dominated by 289 

vegetation and provided good quality observations over the entire growing season in 2014 to 290 

evaluate real-time prediction of VIIRS phenology (Fig. 3). These sites were characterized by a 291 

range of vegetation types including evergreen forest (10.6%), deciduous forest (16.5%), mixed 292 

forest (24.7%), shrublands (4.7%), savannas (9.4%), grasslands (9.4%), permanent wetlands 293 
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(1.2%), cropland/natural (7.1%), croplands (5.9%) and urban and built up (10.5%). To quantify 294 

canopy greenness from the PhenoCam images, the green chromatic coordinate (GCC), which is 295 

comparable with vegetation index derived from satellite data such as NDVI and EVI 296 

(Klosterman et al. 2014), was calculated from the average of pixel digital number in red, green 297 

and blue channels over the region of interest (Wingate et al. 2015): 298 

)( BGR

G
GCC

++
=                                                                                             (2) 299 

where R is the red channel, G is the green channel and B is the blue channel. 300 

 301 

The gaps in temporal trajectory of GCC data were filled and noises were smoothed using the 302 

Hybrid Piecewise Logistic Model (HPLM) method (Zhang 2015). Then, spring phenological 303 

events including greenup onset, date of mid greenup phase and maturity onset were extracted 304 

using the curvature change rate (Zhang et al. 2003). Finally, the timings of these PhenoCam-305 

based phenological metrics were used to evaluate real-time prediction  from VIIRS in 2014 using 306 

root mean square error (RMSE), coefficient of determination (R2), and MAD.  307 

 308 
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Fig.3 Spatial distribution of PhenoCam sites (solid circles) and MODIS land cover types  309 

 310 

3 Results 311 

3.1 Spatial pattern in real-time  prediction of spring phenology 312 

Figure 4 presents spatial patterns in real-time prediction of spring vegetation phenology across 313 

North America. Greenup onset occurred in March in southern regions, gradually shifted 314 

northwards, and reached northern areas around 50oN in May and 65oN in June (Fig. 4a). 315 

Relatively, greenup onset was later in most regions in 2014 than 2015 with a difference up to a 316 

month in some regions (Fig. 4a and 4d). As expected, the timing (DOY) of mid greenup phase 317 

was delayed with increasing latitudes in both years, ranging from 80 in southern areas to 200 in 318 

the northern areas (Figs.4b&4e). Maturity onset presented a similar spatial pattern, ranging from 319 

100 at low latitudes, 140 at middle latitudes and 210 at high latitudes (Figs.4c&4f). However, 320 

spring phenology did not show a clear longitudinal pattern across North America. In mid 321 

latitudes of the United States, greenup onset was earlier in eastern region (around 75), relatively 322 

later in central  region (around 90), and complex in western region (Figs.4a&4d). Moreover, 323 

phenological variation with elevation was evident. The phenological dates (DOY) were about 324 

130 in greenup onset, 150 in mid greenup phase, and 170 in maturity onset at the top of Rocky 325 

Mountains while the corresponding dates at the base of mountains were 100-120, 120-140, 140-326 

160, respectively. Similar pattern was also showed in Appalachia mountains. It is worth noting 327 

that a small area in central Alaska (around 63oN) showed much earlier spring phenology in both 328 

2014 and 2015 compared to similar latitudes in other areas  329 

 330 
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 331 

 Fig.4 Spatial pattern in real-time  prediction (DOY) of the onset of spring phenological events in 332 

North America in 2014 and 2015. Greenup onset (a & d), mid greenup phase (b & e) and 333 

maturity onset (c & f).  334 

 335 

3.2 Comparison of real-time  and short-term predictions with standard phenology detection   336 

The accuracy of real-time and short-term predictions of spring phenology varied with both 337 

phenological event and the number of available VIIRS observations (Fig.5a&5c). The mean 338 
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absolute difference (MAD) decreased as the number of available VIIRS EVI2 observations 339 

increased. When the prediction was carried out at about a half month prior to the phenological 340 

events in both 2014 and 2015, MAD was 15 days, 9 days and 8 days at greenup onset, mid 341 

greenup phase and maturity onset, respectively. In real time, MAD was less than 10 days for 342 

greenup onset and less than 6 days for mid greenup phase and maturity onset. Overall, MAD was 343 

relatively large for greenup onset because the available satellite observations were limited at the 344 

time of implementing prediction, whereas it was considerably decreased for mid greenup phase 345 

and maturity onset. The accuracy increased as model estimates were implemented at the time 346 

approaching the timing of the phenological events (real-time  prediction). 347 

 348 

Uncertainty in predicting spring phenology also decreased as the number of available VIIRS 349 

EVI2 observations increased (Figs.5b&5d). The uncertainty was relatively large when 350 

forecasting greenup onset and maturity onset in both 2014 and 2015, but it was smaller when 351 

forecasting mid greenup phase. Uncertainty was about 3-4 days when forecasting was 352 

undertaken in half a month earlier, and it was about 2-3 days in real-time prediction. The 353 

uncertainty was generally less than 2 days in near real-time prediction, except for maturity onset.  354 
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 355 

Fig.5 Mean absolute difference (a & c) and uncertainty (b & d) in real/near-real time and short-356 

term predictions of spring phenology in North America in 2014 and 2015. The X-axis defines the 357 

different days between the date of implementing VIIRS prediction and the occurrence of 358 

phenological events derived from standard detection. Negative values represent the VIIRS 359 

detection before event occurrence (  prediction in short-term ahead), while positive values 360 

indicate prediction after event occurrence (near real time prediction). The VIIRS detection 361 

carried out within 3 days before and after the event is defined as real-time prediction. 362 

 363 
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 364 

Fig.6 Spatial patterns in mean absolute difference (MAD, days) between real-time prediction of 365 

spring phenology and standard VIIRS detection in 2014 (a, b, c) and 2015  (d, e, f) . Greenup 366 

onset (a &d), mid greenup phase (b &e) and maturity onset (c & f). 367 

 368 

Figure 6 shows spatial pattern of MAD between real-time prediction and the standard VIIRS 369 

detection. MAD for greenup onset ranged from 5 to 10 days (Fig. 6a) while it was much smaller 370 

(less than 5 days) for mid greenup phase and maturity onset in most parts of North America (Figs. 371 

6b&6c) in 2014. A similar spatial pattern of MAD was revealed in 2015 for all three 372 
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phenological events (Figs. 6d-6f). However, the MAD was relatively higher in 2015 than 2014 in 373 

the central and western United States and Mexico. In addition, MAD in the northern region for 374 

all three events was much smaller than that in the southern region for two years.  375 

 376 

 377 

Fig.7 Pixel frequency of mean absolute difference (MAD) between real-time prediction and 378 

standard detection (a) and uncertainty in the real-time prediction (b) at various phenological 379 

events in North America in 2014.  380 

 381 

 382 
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 383 
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Fig.8 Pixel frequency of mean absolute difference (MAD, days) between real-time prediction 384 

and standard detection (a, b, c) and uncertainty (days) in real-time prediction of spring 385 

phenological events (d, e, f)  in various ecosystem types in 2014. Greenup onset (a &d), the mid 386 

greenup phase (b &e) and maturity onset (c & f). 387 

Overall, the pixel frequency with MAD <10 days across the North American continent was 62%, 388 

81% and 82% in greenup onset, mid greenup phase, and maturity onset in 2014, respectively (Fig. 389 

7a). MAD varied with land cover type across North America (Figs. 8a-8c). In real-time 390 

prediction of greenup onset, MAD was less than 10 days in 85% of deciduous forest pixels, 58% 391 

of shrubland pixels, 46% of grassland pixels and 70% of cropland/natural vegetation mosaic 392 

pixels (Fig. 8a). For the mid greenup phase, MAD was less than 5 days in 86% of deciduous 393 

forest pixels and less than 10 days in 81% of shrubland pixels, 61% of grassland pixels and 83% 394 

of cropland/natural vegetation mosaic pixels (Fig. 8b). For maturity onset, MAD was less than 7 395 

days in 84% of deciduous forest pixels and less than 10 days in 86% of shrubland pixels, 73% of 396 

grassland pixels and 74 % of cropland/natural vegetation mosaic pixels (Fig. 8c). The MAD for 397 

each event or land cover type in 2015 was similar to 2014, which was not presented here. 398 

 399 

Figure 9 illustrates the spatial variation in uncertainty of real-time  prediction. Uncertainty was 400 

generally less than 3 days in mid-high latitudes for greenup onset, mid greenup phase and 401 

maturity onset. However, it was up to 8 days in southwestern United States and Mexico. In this 402 

area, the uncertainty in 2015 was higher than in 2014, which was likely associated with EVI2 403 

data quality. Uncertainty also varied with spring phenological events (Fig.7b). Specifically, it 404 

was smaller for predicting the mid greenup phase than greenup onset and maturity onset. The 405 

proportion of pixels with uncertainty less than 3 days was 76%, 80% and 73% for greenup onset, 406 
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mid greenup phase and maturity onset, respectively. The proportions increased to 90%, 94% and 407 

90%, respectively, when uncertainty was less than 6 days. 408 

 409 

The uncertainty of real-time prediction also varied across ecosystem type. Uncertainty in 410 

predicting greenup onset was less than 5 days in 97% of deciduous forest pixels, 82% of 411 

shrubland pixels and 93% of cropland/natural vegetation mosaic pixels (Fig. 8d). For real-time 412 

prediction of the mid greenup phase, it was less than 5 days in 97% of deciduous forest pixels, 413 

91% of shrubland pixels and 94% of cropland/natural vegetation mosaic pixels (Fig. 8e). For 414 

real-time prediction of maturity onset, it was less than 5 days in 97% of deciduous forest pixels, 415 

88% of shrubland pixels and 87% of cropland/natural vegetation mosaic pixels (Fig. 8f).  416 

 417 
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 418 

Fig.9 Spatial patterns in uncertainty (standard deviation, days) of real-time prediction of spring 419 

phenology in 2014 (a, b, c) and 2015 (d, e, f). Greenup onset (a &d), mid greenup phase (b &e) 420 

and maturity onset (c & f). 421 

 422 

 423 
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424 
Fig.10 Comparison of spring phenological events from VIIRS real-time  prediction with 425 

PhenoCam observations in 2014. 426 

 427 

3.3 Comparison of real-time  prediction of phenology with PhenoCam observations 428 

Figure 10 shows that greenup onset, the mid greenup phase and maturity onset from real-time  429 

prediction were all significantly correlated with those derived from PhenoCam datasets (R2 > 430 

0.96, P<0.01). The RMSE was 6.5 days, 5.1 days and 6.1 days for greenup onset, mid greenup 431 

phase and maturity onset, respectively. Correspondingly, MAD (mean absolute difference) was 432 

4.9 days, 4.4 days and 5.1 days. 433 

 434 

4. Discussion  435 

The system developed in this study is robust in predicting phenological events in real time and 436 

short term ahead from near real time NPP VIIRS observations. It is expected in future to 437 

implement the real time prediction using observations from VIIRS on the Joint Polar Satellite 438 

System (JPSS) series that is planned to launch no later than March 2017 (JPSS-1) and  in late 439 

2021 (JPSS-2) (Goldberg et al. 2013). The real-time prediction system should also work well 440 
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using eMODIS data (a latency of 6-10h) over the United States but the delayed release of 441 

standard MODIS observations (a latency of 6-10 days) makes real-time and short-term 442 

predictions impractical (Brown et al., 2015). 443 

 444 

Our results show that the accuracy of real-time prediction of spring phenology is relatively 445 

higher than that in short-term prediction, which agrees well with the results in Zhang et al (2012) 446 

using MODIS dataset to predict fall foliage coloration in real time. This is expected because the 447 

contribution of climatological phenology is relatively large in short-term prediction while it 448 

gradually reduces as the number of available satellite observations increase. There are always 449 

more satellite observations available at the time in performing real-time prediction.  450 

 451 

The mean absolute difference (MAD) between predictions and standard detections varied by 452 

phenological events. The accuracy of greenup onset predictions was lower than mid greenup 453 

phase and maturity onset predictions. This is due to the fact that a limited number of 454 

observations were available at the time of  predicting vegetation greenup onset and the satellite 455 

observations were frequently contaminated by noises. Thus, the simulated potential temporal 456 

trajectories were less effective in describing vegetation development. At the time of mid greenup 457 

phase and maturity onset, more satellite observations were accumulated and the simulated 458 

temporal trajectories more closely tracked the actual vegetation growth.  459 

 460 

Spatially, MAD in real-time prediction of spring phenology was relatively small in mid-high 461 

latitudes compared to low latitudes. This spatial pattern was mainly associated with vegetation 462 

types and climate regimes. In general, the MAD was small in deciduous forest, mixed forest and 463 
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croplands that are mainly distributed in the temperate climate regime in mid-high latitudes. In 464 

this regime, vegetation growth is mostly characterized with one stable and distinctive growing 465 

cycle that is primarily driven by temperature (Liu et al., 2017; Yue et al., 2015; Schwartz et al, 466 

2000; Zhang et al., 2004). However, the MAD was relatively large in semi-arid and arid regions 467 

of  the western United States where shrublands, grasslands, and savannas are dominant. In the 468 

semi-arid and arid regions, vegetation seasonality is subtle, mainly controlled by precipitation, 469 

and varies greatly interannually (Matthews and Mazer, 2016; Zhang et al. 2010). These lead to 470 

the difficult detection of phenological metrics even using standard approach (Ganguly et al., 471 

2010; Zhang et al., 2006). As a result, the climatology of vegetation phenology does not 472 

represent well the variation of historical vegetation growth and the EVI2 trajectories established 473 

in real-time prediction are of high uncertainties.     474 

 475 

The phenology prediction also reveals well spatial shifts across North America. The onset of 476 

spring phenology shifted along latitude, which occurred early in south region and shifted 477 

northwards gradually. This pattern agrees well with the findings from various previous studies 478 

based on standard satellite-based phenology detections (e.g., Zhang et al, 2003; Zhu et al, 2012). 479 

Further, the onset in spring events was delayed at higher elevations, which was evident in 480 

Appalachia Mountains and  Rocky Mountains. This pattern was closely related to elevations 481 

(Bacher and Jeanneret, 1994; Barry, 1992; Hopkins, 1918; Hudson Dunn and de Beurs, 2011; 482 

Liu et al., 2014). However, compared to the regular patterns of impacts from latitudes and 483 

elevations, the effects of longitude on spring phenology is more complex because phenological 484 

events are main controlled by temperature, human activity (croplands), and precipitation from 485 

eastern, central, to western United States, respectively.  486 
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 487 

Validation of real-time phenology prediction is essential but challenging because in-situ datasets 488 

that spatially match satellite footprint are rare. In this study, comparison of real-time prediction 489 

of spring phenological dates with PhenoCam datasets revealed that their correlation was strongly 490 

significant. This suggests that the developed system is robust for operational predictions of 491 

VIIRS phenology. Moreover, the close agreement highlights that PhenoCam dataset from the 492 

networked digital camera measurements offers substantial promise for validating land surface 493 

phenology (Richardson et al. 2009; Hufkens et al., 2012; Sonnentag et al., 2012). Phenocam 494 

characterizes vegetation seasonal dynamics at a landscape scale, which has great advantages over 495 

species-specific observations for validation purpose (Soudani et al., 2008; Keenan and 496 

Richardson 2015; Klosterman et al. 2014; Rodriguez-Galiano et al. 2015). With the expansion of 497 

PhenoCam network covering various ecosystems and geographical regions, the outcomes from 498 

sufficient validations could significantly help the improvement of the system for real-time 499 

phenology prediction.  500 

 501 

It should be noted that real-time and short-term predictions of phenological development is 502 

significantly dependent on the data quality in satellite observations. Because of cloud 503 

contamination, missing observations on land surface could last consecutively for a few weeks, 504 

which greatly reduces the accuracy of phenological predictions. To improve the accuracy of real-505 

time and short-term predictions in future work, we expect to improve our algorithms in two ways. 506 

First, the climatology of land surface phenology could be calculated from longer MODIS time 507 

series, which could represent various potential variations in vegetation growth. Second, the 508 

number of good quality satellite observations could be increased by combining observations 509 
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from eMODIS and the Advanced Baseline Imager (ABI) onboard Geostationary Operational 510 

Environmental Satellite-R Series (GOES-R). GOES-R ABI is a new generation of geostationary 511 

satellite sensor containing red (500m at nadir) and near infrared (1km at nadir) spectral bands. It 512 

was launched in November 2016 (Schmit et al., 2016) and observes the United States every 5 513 

minutes, which provides large opportunities to obtain cloud-free observations for predicting 514 

phenology development.  515 

 516 

5.Conclusions  517 

This study demonstrates for the first time that vegetation phenology can be predicted in real time 518 

and short-term ahead from operational VIIRS observations across various ecosystems over North 519 

America. The prediction of the developed system is implemented by combining climatology of 520 

vegetation phenology and accumulation of timely available VIIRS observations every three days. 521 

This makes significant progress in phenology detections comparing with traditional (or standard) 522 

approaches that typically use historical satellite data to detect phenology in previous years 523 

(Jonsson and Eklundh 2002; White et al. 1997; Zhang et al. 2006; Ganguly et al. 2010). More 524 

importantly, this product is expected to be employed by users for monitoring crop growth (such 525 

as United States Department of Agriculture, USDA), predicting weather conditions (such as 526 

NOAA), and observing vegetation phenology (such as USA National Phenology Network).  527 

 528 

The accuracy of phenological prediction in this developed system increases with the 529 

accumulation of VIIRS observations and from early events to late events. Evaluations revealed 530 

that the real-time prediction of spring phenology from VIIRS data was significantly correlated 531 

with phenological metrics derived from PhenoCam. In particular, their RMSE (root mean square 532 
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error) was 6 days and MAD (mean absolute difference) was less than 5 days. The comparison 533 

with standard phenology detection further showed that MAD was less than 10 days, 5 days and 5 534 

days in greenup onset, mid greenup phase and maturity onset, respectively. MAD also varied 535 

with vegetation types. Specifically, MAD in real-time prediction of greenup onset was less than 536 

10 days in 85% of deciduous forests while it was less than 10 days in 46% of grasslands. Finally, 537 

this system is able to produce the uncertainty in prediction, which was generally less than 3 days 538 

in mid-high latitudes for greenup onset, mid greenup phase and maturity onset although it was up 539 

to 8 days in southwestern United States and Mexico. 540 
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LIST OF FIGURE CAPTIONS 797 

Fig.1 Flowchart of real-time and short-term predictions of spring phenology from VIIRS satellite 798 

data. The EVI2max represents the maximum EVI2 value during a growing season; EVI2BK 799 

represents background value, and LST is land surface temperature, t is the start date of 800 

simulation, t+3 is the date of EVI2 observation following start date. 801 

 802 

Fig.2 An example of simulating potential EVI2 temporal trajectories during a greenup phase 803 

from available EVI2 data and climatological phenology when EVI2 values at the greenup onset 804 

or maturity onset varied. The grey bar represents the potential range of timing and EVI2 values 805 

at the greenup onset and maturity onset, as well as maximum EVI2 values. The grey cross (P1) 806 

represents the date of one month before the climatological greenup onset and P2 is the start date 807 

of simulation. The EVI2 observations at the x-axis are fill values. 808 

 809 

Fig.3 Spatial distribution of PhenoCam sites (solid circles) and MODIS land cover types  810 

 811 

Fig.4 Spatial pattern in real-time prediction (DOY) of the onset of spring phenological events in 812 

North America in 2014 and 2015. Greenup onset (a & d), mid greenup phase (b & e) and 813 

maturity onset (c & f).  814 

 815 

Fig.5 Mean absolute difference (a & c) and uncertainty (b & d) in real/near-real time and short-816 

term predictions of spring phenology in North America in 2014 and 2015. The X-axis defines the 817 
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different days between the date of implementing VIIRS prediction and the occurrence of 818 

phenological events derived from standard detection. Negative values represent the VIIRS 819 

detection before event occurrence (prediction in short-term ahead), while positive values indicate 820 

prediction after event occurrence (near real time prediction). The VIIRS detection carried out 821 

within 3 days before and after the event is defined as real-time prediction. 822 

 823 

Fig.6 Spatial patterns in mean absolute difference (MAD, days) between real-time prediction of 824 

spring phenology and standard VIIRS detection in 2014 (a, b, c) and 2015 (d, e, f). Greenup 825 

onset (a &d), mid greenup phase (b &e) and maturity onset (c & f). 826 

 827 

Fig.7 Pixel frequency of mean absolute difference (MAD) between real-time prediction and 828 

standard detection (a) and uncertainty in the real-time prediction (b) at various phenological 829 

events in North America in 2014.  830 

 831 

Fig.8 Pixel frequency of mean absolute difference (MAD, days) between real-time prediction 832 

and standard detection (a, b, c) and uncertainty (days) in real-time prediction of spring 833 

phenological events (d, e, f) in various ecosystem types in 2014. Greenup onset (a &d), the mid 834 

greenup phase (b &e) and maturity onset (c & f). 835 

 836 
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Fig.9 Spatial patterns in uncertainty (standard deviation, days) of real-time prediction of spring 837 

phenology in 2014 (a, b, c) and 2015 (d, e, f). Greenup onset (a &d), mid greenup phase (b &e) 838 

and maturity onset (c & f). 839 

 840 

Fig.10 Comparison of spring phenological events from VIIRS real-time  prediction with 841 

PhenoCam observations in 2014. 842 
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